February 2025 ROADRUNNER NEWS

Newsletter of the Long Beach Cactus Club Founded 1933; Affiliate of the Cactus and Succulent Society of America, Inc.

Presention: Professor Jorge Ochoa on Edible Succulents

Edible Succulent Landscaping is the use of succulent plants for both aesthetic value as well as consumption. Learn the many succulents that are consumed by the people of different nations.

Jorge Ochoa is an Associate Professor of Horticulture at Long Beach City College and a passionate advocate for native plants and urban biodiversity. He has played a pivotal role in enhancing Long Beach's green spaces, advising on city policies like the Lawn-to-Garden Turf Replacement Program and leading efforts to catalog the city's trees. Known for his infectious enthusiasm, Jorge organizes plant sales with his students and guides wildflower hikes in Griffith Park, where he also contributes to restoration projects. A recognized expert on Southern California's native flora, Jorge inspires communities to embrace sustainable gardening and conservation.

Succulents of the Month

<u>Gasteria</u> is a genus of small to medium-sized succulents characterized by thick, fleshy, tongueshaped leaves that are often mottled or striped with lighter colors. The leaves are usually arranged in two opposite rows (distichous) when young, transitioning to a rosette form as they mature. Gasteria produces tubular, curved flowers in shades of pink, orange, or red, resembling a stomach (hence the name "Gasteria," derived from the Greek word for "stomach"). Gasteria is native to South Africa, primarily in the Eastern and Western Cape provinces.

Gasteria thrives in semi-arid climates with mild, dry summers and cooler, wetter winters. They are adapted to rocky, shaded habitats, often growing under shrubs or on cliff faces. These plants prefer well-draining soils and can tolerate drought but grow best with occasional water during their active periods.

Haworthia is a genus of small, rosette-forming succulents with fleshy leaves that may be smooth, rough, or covered with translucent windows or white tubercles. The leaves vary in shape, from pointed to rounded, and can be solid green, striped, or patterned. Haworthia produces slender, unassuming flower stalks with small, white or greenish flowers.

Haworthia is native to South Africa, primarily in the Eastern and Western Cape regions.

Haworthia is adapted to semi-arid conditions, often growing in shaded or partially shaded habitats, such as under bushes or rocky crevices. They prefer well-

draining soils and can tolerate drought but thrive with regular watering during their growing season. Like Gasteria, they favor mild winters and hot, dry summers.

<u>Taxonomical Notes:</u> Haworthia has undergone substantial taxonomic reorganization. Recent molecular studies have led to the splitting of Haworthia into three separate genera:

Haworthia: Retains species with softer, leafy structures.

Haworthiopsis: Includes species with harder, spikier leaves.

Tulista: Contains larger species previously grouped with Haworthia.

While this reorganization has gained scientific acceptance, many horticultural enthusiasts still use "Haworthia" broadly to refer to all three groups.

Cacti of the Month

Copiapoa is a genus of small to medium-sized cacti, often with a globular or cylindrical shape. The stems are typically gravish-green, with a waxy coating that helps protect against intense sunlight and moisture loss. Many species produce clusters, forming mounds or dense groups. Flowers are funnel-shaped, usually yellow, and emerge from the apex of the plant. Copiapoa is native to the Atacama Desert in northern Chile, one of the driest regions in the world. These cacti thrive in extreme arid conditions, often in coastal fog zones where they rely on "camanchaca" (fog) for moisture. They grow in rocky or sandy soils and are adapted to minimal rainfall, intense sunlight, and large temperature fluctuations.

Eriosyce includes cacti with globular to cylindrical stems, often solitary or slightly clustering. They are notable for their thick spines, woolly areoles, and striking flowers, which are typically pink, red, or white. Fruits are often colorful and covered with spines or wool. Eriosyce is native to Chile and parts of western Argentina, including coastal and mountainous regions. Eriosyce thrives in arid to semi-arid climates, ranging from coastal fog deserts to high-altitude, rocky areas. They are adapted to dry conditions with intense sunlight and poor soils. Some species tolerate occasional frost.

Islaya was historically considered a separate genus but has been incorporated into **Eriosyce** in recent taxonomic revisions due to molecular evidence. This reclassification reflects its close relationship with other species in the Eriosyce complex. Some growers and enthusiasts still use the name Islaya informally.

Islaya comprises small, globular cacti with spiny

stems and tubercles that form subtle ribs. Flowers are often brightly colored, usually pink or yellow, and emerge from the plant's apex. Islaya plants are highly specialized for their harsh environments. Islaya is native to coastal desert regions of Peru and northern Chile, including areas influenced by coastal fog. Like Copiapoa, Islaya is adapted to arid environments, often relying on fog for moisture. They grow in rocky, well-drained soils and tolerate extreme drought and high temperatures.

Ammonium Nitrogen and Acidic Water for Xerophytic Plant Growth

oreword — As we write this article we are reminded that 2009 is the 100th anniversary of the development of the Haber process for the cheap conversion of atmospheric nitrogen into ammonia. This was a true revolution in agriculture since at the time, nitrogen was the limiting

resource. Fritz Haber received the Nobel Prize for this work in 1918.

Abstract — We have seen phenomenal improvements in our plants: stronger spines and bodies, and much greater flowering and seed production as a result of applying the combination of low pH water, 5.0 to 5.5, and a balanced (NPK) fertilizer using ammonium as the primary source of nitrogen during their growing season. This fertilizer was applied constantly with our water from 50-200 ppm (ammonium) N, and 50-100 ppm P and K during the entire growing season.

The use of low pH water is described in an earlier article¹. The combination of low pH water and use of balanced fertilizer (NPK) using ammonium ion as the sole source of nitrogen for plants will be discussed. All facets of the lives of our plants have been improved due to use of low pH water and ammonium nitrogen. We have not seen any harmful effects with this regimen.

Elton's discovery — In my time of growing mainly cacti I have seen that not all fertilizers seem to help the plants. When I fertilize, I want it to keep the plants healthy and also looking alive. Over the last 8 to 10 years the fertilizers that I have used have done neither. For years, I could get Plantex fertilizer, which was pH balanced; it kept the plants growing and healthy looking. When I could no longer find Plantex, I tried about a half dozen other fertilizers, but none of the others really kept the plants growing or looking healthy. I figured that the soil needed to be acidic since my water is alkaline. So I **BELOW LEFT** Three specimens of *Ariocarpus retusus* before application of NH₄

BELOW LEFT The same three specimens one year after treatment with NH₄

bought a fertilizer that contained 1.5% sulfur, which was supposed to keep the soil acidic.

If the soil is damp all he time, as in houseplant culture, bacteria in the soil converts the sulfur into acid keeping the soil acidic. For succulents you let the soil go dry between waterings so the bacteria cannot grow. When I called the fertilizer company, and discovered the secret about sulfur and the bacteria, I knew I had to do something different. That is when I started acidifying my water. Taking the pH of the soil down to a range of between 5 and 5.5 worked wonders on most of the plants. They started growing and shaking off eight to ten years of having to put up with alkaline water. I have fed my plants full strength with whatever fertilizer I have and have never come up with flabby or overfed plants. In the past I have fed full strength at least six times a year. Other times I feed 1/3 strength and in the heat of summer I do not feed at all as a lot of the plants are dormant.

For years, I have used whatever commercial fertilizer I could get that had micronutrients in it and that had close to balanced numbers like 20-20-20. Of all the fertilizers I used, Plantex was the only one that the plants really seemed to do well on. I have listed below some of the fertilizers that I have used and the break down of the nitrogen they contained. Plantex is the only pH balanced

left on a two week trip. When I returned. I was astonished at how well the plants were growing. They had healthied up amazingly. I have seven hot houses and I only watered that one house with the ammonium sulfate. It was the only one where I saw an improvement in the plants.

Ammonium Sulfate — In California, ammonium sulfate is sold as a quick pick-me-up for lawns. A single application as per instructions and a sickly yellow-green lawn will be a nice dark green in only a couple weeks. That is because it is in a form that the plants can use just about immediately. Another example of how well ammonium acts as a source of nitrogen is that one of the main

	Ammoniacal	Nitrate	Urea
	% N	% N	% N
Plantex 20.20.20	3.85	5.9	10.25
Grow More 20.20.20	3.9	5.9	10.2
Peters now called Jacks Classic 20.20.20	0.0	2.1	17.9
TechniGro 20.18.18	4.8	5.4	9.8
TechniGro 20.18.20	4.6	6.0	9.4

% Nitrogen in commercial fertilizers

fertilizer that I found. This explains why it worked so well on my plants while I was using it.

I contemplated this in the middle of the night, remembering how well the plants look in the desert after a decent thunderstorm, a storm with a lot of lightning where plenty of rain soaks the desert. Thinking about this, I decided that I would give my plants a "thunderstorm." To do this test I decided to use ammonium sulfate, which is a fertilizer that the plants take on very quickly. My plants reacted about as quickly as the plants in the desert. I watered the plants thoroughly and then

BELOW LEFT Acanthocalycium lopeziae and below that, Gymnocalycium grisopallidum, both prior to treatment with NH₄. **BELOW RIGHT** The same Acanthocalycium three weeks after NH₄ and the same Gymnocalycium five months after NH₄

uses of ammonium sulfate is an adjuvant in herbicides. The explanation is that it is absorbed through the leaves of the weeds and causes quick growth of the weeds. This quick growth is necessary for the herbicide to disrupt the growth of the weed.

We have involved many cactus and succulent growers from throughout the United States and Great Britain in our studies. These growers are basically following our recommended regimens. We have run these studies during the '08 and '09 seasons. We have come to the conclusion that feeding with a weak ammonium sulfate, nitrogen solution every watering is better than a large shot of nitrogen and then little or none for a while. We have seen that the combination of acidic water with a pH of 5.0 to 5.5 and ammonium sulfate in small amounts had made a world of difference in the growth and health of our plants.

We can also report that in general this regimen appears to be good for just about any type of plant. We have not seen any issues with other families or other types of plants from tropical and woodland to alpine plants. They all seem to do very well and their growth and flowering is greatly enhanced. Weeds also do well though.

Urea — We have come to the realization that the reason that most fertilizers have lower amounts of ammonium sulfate is that it is more expensive than urea. Most retail fertilizers use urea as their primary source of nitrogen for economic reasons. Urea contains the highest percentage of nitrogen (47%) of any solid nitrogen containing chemical. It is cheap, easy to produce and

ABOVE LEFT Two specimens of *Ariocarpus fissuratus* prior to treatment with NH_4 . **ABOVE RIGHT** The same two plants one year after treatment with NH_4 .

transport. For commercial balanced fertilizers the only way to get the nitrogen content above 20% is through the use of urea.

for CAM plants ^{3,4,5}. There appears to be a significant preference in plants for absorption and assimilation of ammonium rather than nitrate. The relative rate of ammonium uptake and assimilation appears to be at least ten fold greater than the rate for nitrate uptake.

Formulations may vary depending upon where you live and what is available for fertilizer. We are advocating ammonium sulfate in conjunction with a balanced fertilizer and the constant application of fertilizer throughout the growing season. Keep in mind that the water should have its pH corrected to about 5.5.

I H unus soils — More and more cities are selling the leaves and branches and green waste to companies that make potting mix. In California in most areas it is now illegal to burn your yard waste and so it is collected at a cost to the people and then sold to companies that make potting mix. Those towns that do not sell it, use it themselves.

Lumber mills that used to burn all their waste now

N source	\$/lb	% N	\$/lb for N
Urea	\$0.33	46.7%	\$0.71
Ammonium Sulfate	\$0.42	21.0%	\$1.98
Calcium Nitrate	\$0.60	17.1%	\$3.51
Magnesium Nitrate	\$0.80	18.9%	\$4.23

Commercial nitrogen costs JR Johnson (10/2009)

Urea needs bacteria in the soil to break it down to a form that plants can use. For plants in soil that stays damp all the time, such as houseplants, urea nitrogen is fine. For cactus and succulent culture in pots where the soil dries out, this nitrogen does not become available to the plant roots. This is generally accomplished with the enzyme, urease, generated by bacteria. These bacteria are not found in desert soils or epiphytic media such as for orchids.

(Bacterial Urease)

 $NH_2CONH_2 + H_2O \rightarrow 2(NH_3) + CO_2$

The urea either evaporates or is washed out of the pot with each watering. Urea is an unsatisfactory source of nitrogen for cacti and other xerophytic plants.

itrate — It has been advised that nitrate nitrogen is a preferable fertilizer for xerophytic plants². However, the literature suggests that ammonium is much more readily absorbed especially sell it. Much of it goes into potting mix. When that waste is breaking down in the potting mix, it is removing nitrogen from the soil. So, the plants are being deprived of much needed nitrogen, that is unless it is replaced. For soils with high humus content containing materials such as "potting soil," sphagnum moss, coir, peat, and similar products, we suggest the following amounts for 114 li (30 gallons):

Material	CC	Tbsp.
20-20-20	60	4
Ammonium sulfate	120	8

Formulation for high humus soils

This is about 50 ppm N, P, and K for the mineral soils. For the high humus, potting mix soils, the amounts are 200 ppm N and 100 ppm P and K.

For a urea free mix, the amounts in 30 gallons of water should be.

	wt %	N	Р	K
Schultz 10-54-10	15.0%	1.5%	8.1%	1.5%
potassium sulfate	15.0%	0.0%	0.0%	7.5%
ammonium sulfate	70.0%	14.7%	0.0%	0.0%
	100.0%			
Total amount in CC	130			
Total amount in tbsp	9			
	PPM in 114 li (30 gal)	190	95	105

Urea free formulation for high humus soils

ABOVE LEFT Coryphantha elephantidens near the beginning of treatment with NH_4 . **ABOVE RIGHT** The same plant five months after treatment with NH_4 .

If the set of the set

Material	CC	Tbsp.
20-20-20	30	2
Ammonium sulfate	30	2

Formulation for high mineral soils

The 20-20-20 fertilizer may contain large amounts of urea as its nitrogen source and this will be washed out of your soil..

If you wish to have a urea and nitrate free fertilizer, here is an example of what you can readily do. There are several types of "bloom" producing fertilizers with very high phosphorus content such as Schultz 10-54-10 that normally have no urea and the nitrogen source is ammonium phosphate. But these do contain the microelements. Potassium sulfate (K_2SO_4) needs to be added along with the ammonium sulfate in order to attain a balanced formula.

	wt %	Ν	Р	Κ	
Schultz 10-54-10	25.0%	10%	54.0%	10.0%	
potassium sulfate	25.0%	0.0%	0.0%	50.0%	
ammonium sulfate	50.0%	21.0%	0	0	
	100.0%				
Total amount in CC	50				
Total amount in tbsp	3.5				
	PPM in 114li (30 gal)	50	52	58	

Urea free formulation for high mineral soils

PPLICATION — The best way to apply is through your watering system. We have described watering systems in our previous article. For larger operations we would suggest the use of a Dosatron[®]. These run in the \$400 range. For smaller systems a tank (garbage can) with a sump pump can be put in place for less than \$100.

A Syphonject[®] system can also work. This will be less than \$25. However we must warn that the dilution rate is heavily dependent on the back pressure. Thus your nozzle, hose size, flow rate, and hose length are critical factors that must be taken into account whenever they are changed.

If you are hand watering your plants by dip and pour from a bucket then you could use the cheaper pellitized form of ammonium sulfate. However, it is a good idea for watering systems to obtain the sprayable type. This material is used as an adjuvant for spraying Roundup® type chemicals. The sprayable type is totally soluble. There is a time release form and the cheaper pellitized form, both of which are not totally soluble and will clog up your nozzles. We have also seen several other commercial fertilizers with this problem. Make sure that your fertilizer is totally soluble and "Sprayable." Do not use the time release form of ammonium sulfate.

When you are compounding these solid materials, it is generally a good idea to thoroughly mix the components. Stratification may occur if some of the particles of the fertilizer have very different particle sizes.

PH CONSIDERATIONS — By and large most municipal water supplies are adjusted to a higher pH sometimes >8.0 and many wells also have high pH water. The high pH puts a strain on the plant roots and absorption of nutrients is prevented. This discussion is covered in our previous article¹. The elevated pH in water supplies is due to the presence of bicarbonate.

AMMONIUM TOXICITY — There is much in the literature regarding the toxicity of too much ammonium to some plants⁶. It would seem surprising in light of the fact that in order for nitrogen to get into the plant it must be converted to ammonium. This uptake of ammonium is known to cause a pH drop close to the root and this is the presumed reason for ammonium toxicity. So the rapid absorption of ammonium becomes too much of a good thing for the plant.

NH4+ ----> (Plant N) + H+(acid) near roots

Plants have different reactions to ammonium. The following families are known to be sensitive: Solanaceae, Cucurbitaceae, Asteraceae, Fabaceae, Chenopodiaceae, Brassicaceae, Salicaceae, Rosaceae, Euphorbiaceae, and Urticaceae. The following plants are known not to be sensitive: Alliaceae, Ericaceae, Pinaceae, Fagaceae, Cyperaceae, Proteaceae, Taxaceae, and Myrtaceae. These plant families in general are tolerant of very low pH (<5.0). The authors suggest that the symptoms can be

alleviated by use of buffered water and high levels of potassium.

However, we have used the same ammonium type of application on our tomatoes, peppers, eggplants and squash as we have with our succulents with wonderful results. These are all on the sensitive list. Perhaps what helps is that we are constantly applying a balanced fertilizer. Dropping the pH below 5.0 seems to affect members of Rosaceae (Potentilla), Impatiens, and Oxalis, a weed among our plants. Also going to a pH of 5.5 seems to correct this problem. At no time have we had any problems with Cactaceae.

What to expect from your plants – Our correspondents have first switched to a low pH regimen and subsequently have added ammonium sulfate nitrogen. The differences they see are very illustrative, since one of the most important issues is the initial quality of the water. Most of our correspondents had alkalinity (bicarbonate) levels of about 1 to 2 meq/li. They report that the effect of the ammonium sulfate is much greater than the effect of lowering the pH. Their comments were that the change in pH was good, but the effect of going to the ammonium sulfate was by far the most significant.

However, one grower has a very high bicarbonate level of 9.7 meq/li. In addition to this, her water contains about 42 ppm nitrate. Her comment was, "Before lowering my pH, a lot of my plants didn't grow much, or not at all and finally puked out, especially the "white" cactus. I had plants for years that just didn't grow! Lowering the pH to the proper level has made old struggling cacti plump up and look healthy instead of mealybug ridden. After adding the ammonium sulfate, the plants bloom a lot more than they ever did. But the biggest difference I would say was the lowering of the pH for the overall health of the plants."

These are quotes from Steven Brack of Mesa Garden, Belen, New Mexico. Steven's bicarbonate levels are similar to ours. Here are some of Steven's comments on acidic water and ammonium sulfate:

"I am totally hooked and telling people whenever the topic comes up [that I] am buying lots of vinegar. I see huge changes on limestone plants, everything from Madagascar, all sorts of high mountain plants like *Pediocactus, Oroya*, etc. My stapelias are going crazy, finally after years of sitting. So far I know of no negative reaction."

"I am using ammonium sulfate in every watering, and the results are amazing. It is many times stronger than vinegar. Everything is going nuts and flowering. The new growth is tremendous. It is not soft lush growth but robust, the spines are longer and with more color than anything else I have ever seen. I have played around with various fertilizers and other additives and they at best are a tiny improvement. The vinegar was a good step to help, the plants were very happy. But the ammonium sulfate with vinegar, 'well, that is party time!' All sorts of cacti and succulents are going nuts, I can't begin to mention

ABOVE LEFT Notocactus uebelmannianus after regimen of NH_4 . **ABOVE RIGHT** The same plant prior to any applied NH_4 .

how everything is really moving. Also the acidified water works wonders for seed germination."

The final results for everyone have been similar but it definitely depends upon where you start. Low pH and ammonium sulfate are definitely very good for the plants. But, don't think that you ought to do one without doing the other.

Conclusions — We have seen from the use of low pH water (5.0 to 5.5) and the use of ammonium sulfate, as part of a balanced fertilizer regimen:

- General improvement in plant health
- Vastly improved flowering and seed production
- Improved conformation including overall general plant growth and structure, leaf, spine, and root formation.

Excess nitrogen – There are several sources that claim excess nitrogen is harmful to cacti and succulents. Lush, spongy growth, higher susceptibility to mealybug and spider mite attack, poor over-wintering, poor flowering, and susceptibility to rot are the pronouncements. However, we are not exactly aware how much is too much nor have we seen it spelled out. We are not sure of where they come up with these statements. Buxbaum's text on nitrogen is typical: "For the so-called "plantfertilizers" of commerce nearly always contain a lot of nitrogen, which leads to lush growth in cacti."^{7,8,9}

Many of the other statements regarding nitrogen sources are simply erroneous, Such as -- "Better formulas will have a good portion of their nitrogen derived from urea. Urea is nitrate nitrogen that all plant connoisseurs should demand"2.

REFERENCES

- Burleigh M., Elton Roberts, and D Russell Wagner, Acidic Solutions, adjusting water's pH improves plant growth, Cactus and Succulent Journal 80, (5) Sept/Oct 2008, pp. 245-250
- 2. Brown R. GROWING CACTI AND SUCCULENTS for the Beginner "Are you buying steak or getting hamburger? Part 8 CSSA Newsletter 68,(2), Mar/Apt 1996 pp. 25, 28, 29
- 3. Arndt SK, Wolfgang Wanek and Günter Hoch, Andreas Richter and Marianne Popp, Flexibility of nitrogen metabolism in the tropical C3–crassulacean acid metabolism tree species Clusia minor http://cat.inist.fr/?aModele=affic heN&cpsidt=13712439
- Fernandes J, Ricardo M Chaloub and Fernanda Reinert, Influence of nitrogen supply on the photoprotective response of Neoregelia cruenta under high and low light intensity http://www.publish.csiro.au/paper/PP01209
- 5. Ruan J, Gerendás J, Härdter R and, Sattelmacher B. Effect of nitrogen form and root-zone pH on growth and nitrogen uptake of tea (Camellia sinensis) plants. Institute for Plant Nutrition and Soil Science, Kiel University, Kiel, D-24098, Germany. jruan@mail.tricaas.com http://www.ncbi.nlm.nih.gov/pubmed/17204540
- Britto DT, Herbert J Kronzucker NH₄+ toxicity in higher plants: a critical review, J. Plant Physiol. 159. 567–584 (2002) Urban & Fischer Verlag http://www.urbanfischer.de/journals/jpp
- 7. Buxbaum F, Cactus Culture Based upon Biology. pp. 34 44 Blandford Press, London, 1958
- 8. Brown R, *The Cactus Family* Timber Press, Portland, Cambridge Chapter four, Cultivation of Cacti pp. 88, 89
- 9. Kelaidis G. *Hardy Succulents* pp. 129,130, Storey Publishing

LBCC PLANT-OF-THE-MONTHS RULES

At the April, 2003 meeting, the following rules were adopted for the Plant-of the-Month (POM) competition:

• A maximum of three plants may be entered in each category (cactus and succulent).

.

- There will be three classes for entrants: advanced (blue tag), intermediate (pink tag) and beginner (yellow tag).
- Advanced and intermediate entrants must have had the plant in their possession for at least six months, beginners for three months.
- Entrants will receive 8 points for first place, 6 points for second place, 4 points for third place, 2 points for show/honorable mention (HM) and 1 point for showing a plant that does not place.
- At the discretion of the judges there may be up to three third places in a category. If plants are not deemed to be of sufficient quality, no third place will be awarded.
- For an entrant to receive points, the entry tags must be collected by the person in charge of record keeping for POM.
- At the annual Christmas party, award plants will be presented to the ten highest cumulative point holders regardless of class.

<u>MONTH</u>	CACTI	SUCCULENTS
February	Copiapoa / Eriosyc / Islaya	Gasteria / Haworthia
March	Corypantha / Escobaria	Senecio / Othonna
April	Variegated cacti	Variegated succulents
May	CLUB SALE	
June	Hybrids & cultivars	Cultivars & hybrids
July	Melocactus / Discocactus	Fockea / Ficus / Ipomoea
August	Favorites (3)	Favorites (3)
September	Grafted cacti	Grafted succulents
October	AUCTION	
November	Miniatures (3) under 3 inches	Miniatures (3) under 3 inches
December	HOLIDAY PAR	ГҮ

Long Beach Cactus Club 2025 Plants of the Months

Advanced		Interm	Intermediate		ner
Gary Duke	21	Amy Angulo	18	Raymond Q.	16
Richard Salcedo	16	Andrew Lander	2	Dam	14
Henry Angulo	9			Kelly Eddy	9
Daniel Zepeda	1			Shirley Kost	8
				Arianna Gardeazabal	1

2025 POM MINI-SHOW STANDINGS

The Long Beach Cactus Club

Est. 1933

Meeting Highlights:

- Monthly programs led by plant experts from around the world
- Mini shows each month with different categories of cacti
 & succulents
- Vendors selling plants, pots, tools, and more
- Monthly raffles
- Advice from members for plant identification and care

Meeting Information:

1st Sunday of each month

1:00 pn

Woman's Club of Bellflower 9402 Oak St, Bellflower, CA

Member Sign Up

\$20.00 per year, per membership \$10.00 for engraved name badge (optional) Cash or Check - Made out to the Long Beach Cactus Club			
Membership year:	Amount paid:		
Name:			
Email:			
Address (for mailing purposes):			
Phone number:			

SNACK AND REFRESHMENT SCHEDULE

<u>MONTH</u>	LAST NAME STARTS WITH
February	C, D
March	E, F, G
April	H, I, J
May	Show & Sale
June	K, L, M
July	N, O
August	P. Q, R
September	S, T , U, V
October	Auction
November	W, X, Y, Z
December	Holiday Party

LBCC OFFICERS AND BOARD MEMBERS FOR 2025

PRESIDENT	Nelson Hernandez	SECRETARY	Kelly Eddy
VICE-PRESIDENT	William Ramirez	TREASURER	Henry Angulo
BOARD OF DIRECTORS	Daniel Almanza, Christopher Bu	cka, Scott Bunell, Lemond	Lott, Alfonso Molina
CSSA LIAISON	M. A. Bjarkman	NEWSLETTER	Andrew Lander
VENDORS	Lupe Casas	PROGRAMS	Nelson Hernandez
MEMBERSHIP	Lawrence Hofman	HISTORIAN	Ken Shaw
INTER-CITY SHOW	Henry Angulo & Scott Bunell	MINI-SHOW	Open
LIBRARIAN	William Ramirez	X-MAS PARTY	Open
PHOTOGRAPHER	Dereck Diaz	REFRESHMENTS	Erika Villalobos
MAY SALE	Henry Angulo	AUCTION	Gretchen Lewotsky
INSTAGRAM	Scott Bunnell & Nelson Hernand	lez	
WEBSITE	German Rivera & Scott Bunnell		

NEWSLETTER

IF YOU HAVE ANY STORIES, cultivation tips, information about upcoming events, photos, <u>corrections</u>, or news in general about cacti and succulents that might interest our members, **please send them in**. Comments and suggestions are always welcome. Remember, this is *your* newsletter. Physical address: Andrew Lander, 3041 Roxanne Ave., Long Beach, CA 90808. Cyber address: <u>landruc@gmail.com</u>